Сверхсильные импульсные магнитные поля

Что такое сверхсильные магнитные поля?

В науке для познания природы в качестве инструментов используются различные взаимодействия и поля. В ходе физического эксперимента исследователь, воздействуя на объект исследования, изучает отклик на это воздействие. Анализируя его, делают заключение о природе явления. Наиболее эффективным средством воздействия является магнитное поле, так как магнетизм – широко распространенное свойство веществ.

Силовой характеристикой магнитного поля является магнитная индукция. Далее приводится описание наиболее распространенных методов получения сверхсильных магнитных полей, т.е. магнитных полей с индукцией свыше 100 Тл (тесла).

Для сравнения ­–

  • минимальное регистрируемое с помощью сверхпроводящего квантового интерферометра (СКВИД) магнитное поле – 10-13 Тл;
  • магнитное поле Земли – 0,05 мТл;
  • сувенирные магниты на холодильник – 0,05 Тл;
  • альнико (алюминий-никель-кобальт) магниты (AlNiCo) – 0,15 Тл;
  • ферритовые постоянные магниты (Fe2O3) – 0,35 Тл;
  • самариево-кобальтовые постоянные магниты (SmCo) - 1,16 Тл;
  • самые сильные неодимовые постоянные магниты (NdFeB) – 1,3 Тл;
  • электромагниты Большого адронного коллайдера – 8,3 Тл;
  • самое сильное постоянное магнитное поле (Национальная лаборатории сильных магнитных полей Флоридского университета) – 36,2 Тл;
  • самое сильное импульсное магнитное поле, достигнутое без разрушения установки (Лос-Аламосская национальная лаборатория, 22 марта 2012 года) – 100,75 Тл.

магнитные поля
В настоящее время исследования в области создания сверхсильных магнитных полей проводятся в странах – участниках «Megagauss Club» и обсуждаются на Международных конференциях по генерации мегагауссных магнитных полей и родственным экспериментам (гаусс – единица измерения магнитной индукции в системе СГС, 1 мегагаусс = 100 тесла).
Megagauss Club

Для создания магнитных полей такой силы необходима очень большая мощность, поэтому в настоящее время их получение возможно только в импульсном режиме, причем длительность импульса не превышает десятков микросекунд.

Разряд на одновитковый соленоид

Самым простым методом получения сверхсильных импульсных магнитных полей  с магнитной индукцией в диапазоне 100...400 тесла является разряд ёмкостных накопителей энергии на одновитковые соленоиды (соленоид - это однослойная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра).
одновитковый соленоид

Внутренний диаметр и длина используемых катушек обычно не превышают 1 см. Индуктивность их мала (единицы наногенри), поэтому для генерации в них сверхсильных полей требуются токи мегаамперного уровня. Их получают с помощью высоковольтных (10-40 киловольт) конденсаторных батарей с низкой собственной индуктивностью и запасаемой энергией от десятков до сотен килоджоулей. При этом время нарастания индукции до максимального значения не должно превышать 2 микросекунды, иначе разрушение соленоида произойдет раньше, чем будут достигнуто сверхсильное магнитное поле.
одновитковый соленоид

Деформация и разрушение соленоида объясняются, что из-за резкого возрастания тока в соленоиде существенную роль играет поверхностный («скин») эффект - ток концентрируется в тонком слое на поверхности соленоида и плотность тока может достигать очень больших величин. Следствием этого является возникновение в материале соленоида области с повышенными температурой и магнитным давлением. Уже при индукции 100 тесла поверхностный слой катушки, выполненный даже из тугоплавких металлов, начинает плавиться, а магнитное давление превышает предел прочности большинства известных металлов. С дальнейшим ростом поля область плавления распространяется вглубь проводника, а на его поверхности начинается испарение материала. В итоге происходит взрывообразное разрушение материала соленоида («взрыв скин-слоя»).

Если же величина магнитной индукции превышает значение 400 тесла, то такое магнитное поле обладает плотностью энергии, сравнимой с энергией связи атома в твёрдых телах и намного превышает плотность энергии химических взрывчатых веществ. В зоне действия такого поля происходит, как правило, полное разрушение материала катушки со скоростью разлета материала витка до 1 километра в секунду.

Метод сжатия магнитного потока (магнитная кумуляция)

Для получения максимального магнитного поля (до 2800 Тл) в условиях лаборатории применяется метод сжатия магнитного потока (магнитная кумуляция).

Внутри проводящей цилиндрической оболочки (лайнера) с радиусом r0 и сечением S0 создается аксиальное стартовое магнитное поле с индукцией B0 и магнитным потоком Ф = B0S0 и. Затем лайнер симметрично и достаточно быстро сжимается внешними силами, при этом его радиус уменьшается до rf и площадь сечения до Sf. Пропорционально площади сечения уменьшается и магнитный поток, пронизывающий лайнер. Изменение магнитного потока в соответствии с законом электромагнитной индукции вызывает возникновение в лайнере индуцированного тока, создающего магнитное поле, стремящееся компенсировать уменьшение магнитного потока. При этом магнитная индукция соответственно увеличивается до значения Bf=B0*λ*S0/Sf, где λ – коэффициент сохранения магнитного потока.
сжатие магнитного потока

Метод магнитной кумуляции реализован в устройствах, получивших название магнитокумулятивных (взрывомагнитных) генераторов. Сжатие лайнера осуществляется давлением продуктов взрыва химических взрывчатых веществ. Источником тока для создания начального магнитного поля служит конденсаторная батарея. Основоположниками исследований в области создания магнитокумулятивных генераторов были Андрей Сахаров (СССР) и Кларенс Фоулер (США).
МКГ

В одном из опытов в 1964 году на магнитокумулятивном генераторе МК-1 в полости диаметром 4 мм удалось зарегистрировать рекордное поле 2500 Тл. Однако неустойчивость магнитной кумуляции явилась причиной невоспроизводимого характера взрывной генерации сверхсильных магнитных полей.  Стабилизация процесса магнитной кумуляции возможна при сжатии магнитного потока системой последовательно включаемых коаксиальных оболочек. Такие устройства называют каскадными генераторами сверхсильных магнитных полей. Их основное достоинство заключается в том, что они обеспечивают стабильность работы и высокую воспроизводимость сверхсильных магнитных полей. Многокаскадная конструкция генератора МК-1, использующая 140 кг взрывчатого вещества, обеспечивающих скорость сжатия лайнера до 6 км/с, позволила получить в 1998 году в Российском федеральном ядерном центре рекордное в мире магнитное поле 2800 тесла в объеме 2 см3. Плотность энергии такого магнитного поля более чем в 100 раз превышает плотность энергии самых мощных химических взрывчатых веществ.
МК-1

Применение сверхсильных магнитных полей

Начало использованию сильных магнитных полей в физических исследованиях было положено трудами советского физика Петра Леонидовича Капицы в конце 1920-х годов. Сверхсильные магнитные поля применяются в исследованиях гальваномагнитных, термомагнитных, оптических, магнитно-оптических, резонансных явлений.

Они применяются, в частности:

  • для исследования эффекта Фарадея (эффект Фарадея – поворот на угол β плоскости поляризации линейно поляризованного светового луча, проходящего через изотропную среду, находящуюся в магнитном поле);
  • для исследования эффекта Зеемана (эффект Зеемана - расщепление энергетических уровней и спектральных линий атомов под воздействием магнитного поля)
  • для изучения свойств веществ в экстремальных условиях, так как энергия магнитного поля напряжённостью 1000...1500 Тл превышает энергию связи частиц в твёрдых телах, а магнитное давление превышает давление в центре Земли. Это может быть использовано, например, для сжатия водорода. В химических реакциях, отдавая электрон, водород ведет себя как металл, но для полноценного металла водороду не хватает кристаллической решетки. Существует предположение, что при температурах, приближенных к абсолютному нулю, и давлении в миллионы атмосфер, возможно образование кристаллической решетки водорода с удивительными свойствами, например, сверхпроводимостью;
  • в оружии электромагнитного импульса (ЭМИ).
    магнитные поля

Яндекс.Метрика